-6/

36585

Qz\e

Gastner

Towards Automation of User Interface Design

Rainer Gastner

Gerhard K. Kraetzschmar

Ernst Lutz

Research Group Knowledge Acquisition
Bavarian Research Center for Knowledge Based Systems (FORWISS)

Am Weichselgarten 7, 8500 Erlangen, Germany
e-mail: gastner@forwiss.uni-erlangen.de

Abstract

"This paper suggests an approach to automatic soft-

ware design in the domain of graphical user interfaces.

_There are still some drawbacks in existing UIMSs
- which basicly offer only quantitative layout specifica-
" tions via direct manipulation. Our approach suggests
- a convenient way to get a default graphical user nter-
" face which may be customized and redesigned easily
“in further prototyping cycles. .

1 Introduction

The automation of software design becomes more
powerful if the target systems generated are limited
to a certain domain. The domain addressed in this
paper 1 the class o graphical, highly interactive sys-
tems for accessing data of specified data structures

by end users. The focus of this paper is further re-

stricted. It concentrates on the automation of the
design of a graphical user interface (GUI) for these
gystems.

Building GUIs with GUI toolkits or user interface

management systems (UIMSs) is still a laborious,
time—consuming task even if it is supported by di-
rect manipulation facilities [6]. The basic problems
we identified are the following:

e The GUI designer has to decide which graphi-
cal element B appropriate for a desired interac-
tion, ie. given a data structure and data type
descriptions of the elements to be accessed and
a set of GUI elements the designer has to per-
form a mapping between the data structure and
the GUI elements.

o With direct manipulation an initial GUI may be
built but if the data structure or the data types
are changed the manual adaption of the GUI

50

arduous. According to the changes of a data
structure the extent of the redesign task may
cause pretty mmch effort.

e Due to the lack of adopted GUI design guide-
lines, for similar data structures in different ap-
plications a different GUI may exist which is con-
tradictious to user mterface consistency [10].

The approach itroduced in this paper to address
these problems is the automatic generation of GUIs
from a high level specification. This generation is
performed by a knowledge-based meta-tool which B
used by a GUI designer. Questions which have to be
tackled include the following: (1) To what extent can
the designer be supported in the specification task?
(2) What kind of user interface should the meta-tool
have. (3) Which kind of knowledge 15 domain invari-
ant and which is application specific (and therefore
needs to be entered by the designer)? (4) Which set
of default design decisions are adequate?

Our approach to answer these questions is based
on the following idea: The designer specifies data
structures, data types and operations which the user
of the target system has to perform with an user-
friendly GUL Corresponding GUI elements realizing
these operations are associated automatically and the
GUI i generated. The designer in turn refines the
GUI by interactivly customizing the meta-tools asso-
ciation and specifying gualitative layout constraints.
This approach facilitates users who have no knowl-
edge about interface programming to construct a GUI
easily. Since the GUI of a meta-tool itself is in the
domain our approch i applicable for the design of
meta-tool’s GUI as well.

In section 2 the addressed domain is introduced
in more detail. Section 3 discusses the problems of
configuration and generation of the target systems.
In section 4 our approach is described to solve these
problems. Section 5 compares our approach to re-
lated work and seciion 6 gives some concluding re-



marks and perspectives on future work.

2 Domain

The domain our meta—tool addresses is the dass of
GUIs that allow the access of specified data struc-
tures whose elements are characterized be specific
data types. The access comprises additon, deletion,
modification, selection and browsing of data struc-
tures and instances. o
There exist rather different interpretations of what
the notion GUI should mean [6}. In our meta-tool the
GUI is built with a set of objects which have a de-

Gastner

e Since an initially generated GUI in most cases
does not meet the end user’s whishes rapid proto-
typing facilities for iterative refinement and cus-

" tomization is needed.

e The specification facility must allow only con-
sistent specifications, ie. the designer’s specifi-
cation has to be syntactically and semantically
correct and the generator will produce a GUI
inside the domain. How can we support specifi-

cation consistency?

The following section discusses our approach to-
wards an automation of the GUI design addressing
the questions given above.

scription of a graphical presentation and methods to

handle the display presentation and the communica-
tion with the underlying window system. Examples
are buttons, settings or text fields. No other func-
tionality is added to the GUI. The GUI objects are
described within an object—oriented class hierarchy
adopting inheritance. This is the common approach
how state—of-the-art GUI toolkits and UIMSs are re-
alized [6].

Our meta—-tool produces specializations of classes
in a cass hierarchy provided by the GUI toolkit
LispView [1] and instantiation methods. LispView
provides an mterfaces between Sun CommonLisp and
OpenWindows. The same structure is generated by
the GUI devolopment system OpenWindows Devel-
oper’s Guide [3].

3 Problem Description

The design of & meta—tool for automating the design
of GUIs from specifications of data structures, data
types and operations raises some questions which
mainly influence the meta-tool design decisions:

o Which kind of knowledge has to be represented
to support the generation and which kind of
knowledge representation should be used?

but application invariant and which part s ap-
plication specific?

What kind of default configuration decisions
makes sense? Can specific subdomains be identi-
fied for which specific configuration macros may
be used?

What is the most efficient way to enter geometric
layout specifications?

51

Which part of the knowledge is domain specific

4 Approach

State-of-the-art UIMSs mainly deal with a user—
friendly composition of the GUI. From this point of
view only the syntactical aspects in building GUls
are addressed. But naturally GUls are built for user
interactions which have certain semantics. For in-
stance, when the GUI designer using a direct ma-
nipulation UIMS selects a button and arranges it
in the target interface via mouse dragging he kmows
the reason why he selects a button and which opera-
tion should be performed by dicking on the button.
The GUI components are nothing else than graphi-
cal presentations of abstract interactions. The map-
ping from the semantics of these interactions to cor-
responding GUI elements is the main task of an GUI
designer.

QOur approach for specifying GUIs starts from a se-
mantic point of view and focuses on this mapping.
The GUI designer does not specify a composition of
the GUI components itself rather than the interac-
tions the GUI components shall be used for. That
means the focus of the specification is not how to
present interactions on the screen but what kind of
interactions shall be established. The interactions we
consider are the access operations specified in section
2. The mapping from the interaction specification

to the GUI components is done by the meta-tool

automatically. In a further step the designer may
customize the generated GUI either by changing the
mapping or specifying additional qualitative layout
constraints.

4.1

In this section the configuration process is discussed.
Figure 1 provides an overview of the configuration
steps. The actions the designer has to perform are

Configuration Process



interaction spectiication

,v{ GUi generation

evaluation

mapping and
layout
detfaulits

mapping spectﬁca]on

1 layout specification

ok

Figurel: iterative GUI configuration process

gpecification and evaluation represented as round-
cornered boxes. The meta-tool activity (the genera-
tion of the GUI) is represented as a rectangular box.

The designer starts with the specification of the
desired interactions on data structures. Then an i-
tial GUI & generated by the meta-tool using default
mapping and layout configurations stored in a knowl-
edge base (see section 4.2). The initial generation has
to be evaluated by the designer. Then one of the fol-
lowing four choices may be made:

1. The designer agrees with the generated GUT and
the configuration process i finished.

2. The designer specifies qualitative geometric lay-
out constraints to rearrange the GUI compo-
nents on the screen.

3. The designer alters the mapping between the
specified interactions and the corresponding GUI
component.

4. The designer manipulates the interaction speci-
fication, e.g. a new element B added to a data
structure.

In case of a new or re-specification a new genera-
tion cycle starts. The order given above implies the
extent of the GUI redesign in a cycle after evalua-
tion. Choice 2 affects only the geometric position of
GUI elements, choice 3 affects the presentation of an
interaction, and choice 4 affects the interaction it-
self. Explorative rapid prototyping by iterating the

52

Gastner

configuration cycles is supported conveniently, since
the designer starts with a specification of abstract in-
teractions omitting GUI aspects in the initial phase.
In following cycles he can customize presentation as-
pects very quickly or redesign the interactions.

Since end users are supposed to design the GUls
the meta-tool must provide user—friendly graphical
interfaces itself. Tb support specification consistency,
the specification is menu—driven as far as possible.
Menus with appropriate selections may be offered
which is further discussed in section 4.2. An iterest-
ing issue is that the GUT of the meta-tool to enter the
specification is itself in the domain of the meta—tool.
Since the meta-tool allows to use the specification
languages directly without the corresponding Gu1,
the GUI for the meta-tool can be generated by the
meta-tool itself.

4.2 Configuration Knowledge and

Representation

This section deals with the knowledge needed to au-
tomate the GUI configuration. We distinguish two
classes of knowledge. Knowledge is needed to support
an efficient user—friendly specification and to gener-
ate a GUI with an minimal specification. This kind
of knowledge is application-invariant and refered as
domain-specific (in the GUI domain). On the other
hand application-specific knowledge must be enterd
by the designer to build an GUI for a set of certain
interactions. The following two subsection discuss
these two knowledge classes.

4.2.1 Domain-specific knowledge

The following listed knowledge categories are stored
in the meta-tool’s knowledge base in arder to sup-
port specification and generation. Note that this
is mainly knowledge about the possible application—
specific knowledge (e.g. possiple types of layout con-
straints) and therefore meta-knowledge.

¢ model of target architecture; the structure
of the code generated by our meta—tool is given
by the code structure the Developer’s Guide for
LispView interfaces [3] generates.

e a library of interaction types and data
types; interaction types include read and write
access to data and selection of data. Cur-
rently the lLibrary of data types includes emu-
meration, character, real, integer, string, sym-
bol, and object-class.

T Otherwise there would be meta-tool tower never ending.



¢ a library of GUI elements; this library is
given by the used GUI toolkit LispView [1}.

¢ mapping of interaction specifications to
GUI elements; the mapping is stored as a ma-
trix in which for certain conditions made in a
data type specification a set of possible GUI
components is associated. The GUI component
selected by default is marked (see also section
44.

¢ library of layout constraints;

menus. Furthermore, there exits a layout con-

straint construction facility for the meta-tool de-

signer to implement additional constraint types
based on a combination of types from a basic set.

e standard configurations; see section 4.4.

The domain-specific knowledge i stored in ASCII-
files in special representation languages. The files
may either be edited directly by a text editor or be
generated from graphical specifications. An inter-
preter reads these files and maps the external rep-
resentation to internal objects. '

4.2.2 Application—specific knowledge

As shown I figure 1 there are three specification pos-
gbilities providing mput for the generator.

o interactions; the specification comprises the
type of operation and the data type to be ac-
cessed. The data type 8 specified separately.
Thus more than one interaction may access data
of the same data type in different ways. The ex-
ample below shows the declarative specification
generated from the graphical specification envi-
ronment. A manipulation mteraction is specified
on data of an integer slot. The value range is re-
stricted between 100 and 500, the slot is single-
valued, and the value mmust be umique and en-
tered.

(def-interaction
:id ‘engine-number-manipulation
:operation ’manipulation
:data-typs ’engine-number-type)
(def-integer
:id ’engine-number-type
:equalorgreater 100
ilessorequal 500
mincard 1
maxcard 1
unique T)

53

currently
we have realized 36 layout constraint types
which are hierarchically organized and offered in.

Gastner

The declarative specification languages may also
be used directly by the designer. Both mter-
actions and data types are offered in menus to
the designer. The menus are configured dy-
namically according to certain specification con-
straints; e.g. the following constraint may not be
violated in the example above: (lessorequal
mincard maxcard).

¢ association of interactions and GUI com-
ponents; if the designer does not agree with the
meta-tool’s association he may select another
association or more than one associations for a
given interaction from a menu. The menu items
consist of all GUI components which are accept-
able presentations for the interaction asserting
a consistent specification. If the designer asso-
ciates more than one GUI component to an in-
teraction, the interaction is presented in different
fashions in the GUI. For mstance, the interac-
tion in the example above may be presented as
numeric field or a slider. The meta-tool would
select the numeric field by default.

¢ layout constraints; the qualitative layout con-
straints may be specified using a declarative

“specification language ar a GUI generating sen-
tences of this language. The following example
demonstrates the power and user—friendlyness of
our layout mechanism:
Let By, By, ..., Bs be boxes which shall be arranged as
follows: B, and By shall be at the bottom o the layout
frame; B; shall be m the upper left comer o the layout
frame; and B; shall be over B; and By . This is expressed

as follows:
(bottom-margin By Bs)

(upper-left-corner B; )

(over By (B3 Bs))
Entering the first layout constraint via the specification
GUI B; md then B; would by selected with the mouse an
the screen and then the constraint bottom-margin would
be selected from the menu.

4.3 Layout computation

Each GUI element has a rectangular bounding-box
which provides the size for the layout generator. The
36 layout constraints are one—dimensional geometric
relationships between these boxes. N-ary relation-
ships are resolved into binary omes which are con-
nected with a conjunction. The corners of the boxes
are represented by variables and the constraints are
always inequations of the following form:
a<zi-5 <G
These unequations can be solved using a longest-path



algorithm suggested in [11]. If there are inconsisten-
des in the specified constraint set our algorithm re-
tracts contradictious constraints. The boxes are ar-
ranged fulfilling the specified constraints and are po-
sitioned in the upper left corner of the layout frame.
In a second cycle overlapping boxes (this may oc-
cur I the constraint set is not restrictive enough)
are solve by adding additional contraints with dis-
junctions: A box B; and a box B; do not over-
lap if (beside By B;) V (beside B;B;) V (over
By B,) V (over B;B;) holds. Since there may be
a huge number of layout configurations solving the
constraint set without overlapping the layout algo-
rithm gets a certain time for processing (e.g. three
seconds). The algorithm generates a set of solutions
and then selects the best solution when the time is
over. The selection criteria adopted currently i e-
ther to minimize the area of the layout frame if the
size is not prespecified or to arrange the boxes with
equal distances between them in a fixed layout frame.

4.4 Standard Configurations

In order to give support in the specification of GUI
component associations to interactions and to select
default associations we (partly) represent knowledge
found in the OPEN LOOK application style guide-
Enes [2]. This knowledge is stored in a matrix in this
way that for each GUI component it is marked under
which conditions it is appropriate and i it should be

selected by default. Furthermore, OPEN LOOK pro-
vides a unique look-and-feel for all the target GUls
and the GUI sepecification environment of our meta—
tool.

It is possible to preconfigure special editor types
which include a number of fixed interactions. For
instance, a login editor consists always of two inter-
actions, one for entering the user’s name and one for
entering the password. These two interactions are
preconfigured as a symbol and string manipulation
interaction. Furthermore, a layout frame with a fixed
size is configured, layout constraints are specified that
both GUI components (the meta-tool will associate
two text fields) should be centered and the text field
for the user’s name should be located over the field
for the password entry. The configuration is stored
as subclass of a preconfigured editor class. Other
specialized editors may be partly preconfigured and
layouted like object editors or browsers. Preconfig-
ured GUI classes can be dynamically added by the
designer.

Adopting this configurartion library and the repre-
sented OPEN LOOK style guidelines we facilitate the

54

Gastner

generation of GUIs which have a common structure
and supports GUI consistency [10].

4.5 Implementation

Our meta—tool is implemented in Sun CommonLisp,
CLOS and LispView [1]. Object-oriented program-
ming is adopted basically. The target code is gener-
ated using templates which are expanded according
to the designer’s specification or standard configura-
tions. By replacing the templates it is possible to
generate other GUI target code as well.

5 Related Work

In the last decade human-computer interaction and
the user interfaces have become an important re-
search field. UIMSs try to improve GUI development
and support mechanisms for GUI and dialogue spec-
ification, representation and management [6] [9]. In
[7] several generations of UIMSs are identified. It
is predicted that future UIMSs will be knowledge—-
based and generate a user interface automatically us-
ing the specification of the underlying application.
Our approach is a step in this direction. Currently
the interactions have still to be coded by a GUI de-
signer, but there should be a way to generate the
interaction specification from application programs
automatically as well.

A pumber of development methodologies have been
suggested for user interfaces. Most of them daim
explorative prototyping as our approach (see figure
1), e.g. the star life cycle suggested m [7].

User interfaces may be specified language-based
with special user interface description languages,
graphical-based with direct manipulation facilities or
with automatic generation from interaction descrip-
tions [9]. Since our meta-tool generates code which
can be manipulated by the Developer’s Guide [3]
our approach combines these three possibilities which
may be alternatively used.

Similar approches for automatic generation of
GUIs are used in the GADGETS system [8] and
the PRED system [13], but they lack qualitative
layout specifications. Automatic presentation sys-
tems for information like SAGE [12] also use meta-
information to select an adequate presentation style.
A similar approach of default configurations of edi-
tors i applied in the meta-tool DOTS [4].



6 Concluding Remarks and

Future Work

We suggested an approach towards automation of
user interface design which starts from a semantic
point of view. The initial specification only deals
with what the GUI is to be built for and not how. Fur-
ther prototyping cycles allow to customize the gen-
erated GUI qualitatively. Since the generated GUI
code is interpretable by the direct manipulation tool
Developer’s Guide [3], also quantitative layouting i
available and may be adopted alternativly. Since the
meta-tool’s GUI is in the meta-tool’s domain itself a
reflexive application of the meta-tool is possible.

In the project KME (Knowledge Maintenance
Environment)? we designed a meta-tool called KME
workbench [5] for generating maintenance compo-
nents for knowledge bases of expert systems. A main-
tenance component for updating objects of an object
oriented representation needs a GUI of the domain
described in this paper. Thus the GUI design meta—
tool is part of the KME workbench. We experienced
in this project that qualitative layout specifications
are very convenient and allow rapid explorative pro-
totyping. The GUI specification environment also al-
lows end users (e.g. knowledge engineers with only
few programming experience) to build adequate GUls
easily.

We acquired GUI design knowledge from the
OPEN LOOK GUI application style guidelines [2]
which is represented in a matrix representation and
allows the meta-tool to provide default configura-
tions. Furthermore, the explicit representation can
easily be changed and augmented.

Currently we work on the extension of default con-
figurations and GUI facilities. Special editor types
are identified in more specific application domains
and represented. We will evaluate how the GUI spec-
ification can be acquired automatically from the un-
derlying application. In the knowledge maintenance
context we will try to generated a default dialogue
control supported by a transaction management.

References

(1] Lisp View Programming Manual. Sun Microsys-
tems, Inc., 1989. '

[2] OPEN LOOK Graphical User Iterface Appli-
cation Style Guidelines. Sun Microsystems, Inc.,
Addison-Wesley, Reading, Massachusetts, 1990.

?KME was started as joint project between FORWISS and
the company BMW, Munich.

55

Gastner

[3] OpenWindows Developer’s Guide LI, User’s

Manual Sun Microsystems, Inc., 1990.

[4] Henrik Eriksson. Meta-Tool Support for Knowl-
edge Acquisition. PhD thesis, Linkoeping Uni-
versity, Sweden, 1991.

[5] Rainer Gastner, Gerhard K. Kraetzschmar,
and Ernst Lutz. Kme-workbench: a meta-
tool for designing maintenance components for
knowledge based systems. paper submitted to
ECAI92, January 1992.

[6] H. Rex Hartson and Deborah Hix. Human-
computer interface development: concepts and
systems for its management. ACM Computing
Surveys, 21(1):5-92, March 1989.

[7] HR. Hartson and D. Hix. Toward empirically
derived methodologies and tools for human-
computer interface development. It. Journal of
Man-Machine Studies, 31(4):477-494, October
1989.

[8] Johannes L. Marais. The gadgets user interface
management system. Structured Programming,
12(2):75-89, 1991.

[9] Brad A. Myers. User-interface-tools: introduc-
tion and survey. IEEE Software, 15-23, January
19889.

Jakob Nielsen, editor. Coordinating User Mier-
faces for Consistency. Academic Press, London,
1989.

[10]

[11] Thomas Ottmann and Peter Widmayer. Al-
gorithmen und Datenstrukiuren. Bl Wis-

senschaftsverlag, Mannheim, 1990.

Steven F. Roth and Joe Mattis. Automat-
ing the presentation of information. In Sev-
enth IEEE Conference on Artificial Intelligence
Applications, pages 90-97, IEEE, IEEE Com-
puter Society Press, Washington, February, 24—
28 1991.

[13] S. Xie and P. H. Winne. Kamit: a knowl-
_ edge acquisition and maintenance interface tool.
In M. H. Hamza, editor, Brpert Systems The-
ory and Applications, pages 115-118, IASTED -
Acta Press, Anaheim, 1988.

12]



